Inhibition of myosin light chain phosphorylation decreases rat mesenteric lymphatic contractile activity.
نویسندگان
چکیده
Muscular lymphatics use both phasic and tonic contractions to transport lymph for conducting their vital functions. The molecular mechanisms regulating lymphatic muscle contractions are not well understood. Based on the well-established finding that the phosphorylation of myosin light chain 20 (MLC(20)) plays an essential role in blood vessel smooth muscle contraction, we investigated if phosphorylated MLC(20) (pMLC(20)) would modulate the tonic and/or phasic contractions of lymphatic muscle. The effects of ML-7, a MLC kinase inhibitor (1-10 microM), were tested on the contractile parameters of isolated and cannulated rat mesenteric lymphatics during their responses to the known modulators, pressure (1-5 cm H(2)O) and substance P (SP; 10(-7) M). Immunohistochemical and Western blot analyses of pMLC(20) were also performed on isolated lymphatics. The results showed that 1) increasing pressure decreased both the lymphatic tonic contraction strength and pMLC(20)-to-MLC(20) ratio; 2) SP increased both the tonic contraction strength and phosphorylation of MLC(20); 3) ML-7 decreased both the lymphatic tonic contraction strength and pMLC(20)-to-MLC(20) ratio; and 4) the increase in lymphatic phasic contraction frequency in response to increasing pressure was diminished by ML-7; however, the phasic contraction amplitude was not significantly altered by ML-7 either in the absence or presence of SP. These data provide the first evidence that tonic contraction strength and phasic contraction amplitude of the lymphatics can be differentially regulated, whereby the increase in MLC(20) phosphorylation produces an activation in the tonic contraction without significant changes in the phasic contraction amplitude. Thus, tonic contraction of rat mesenteric lymphatics appears to be MLC kinase dependent.
منابع مشابه
PKC activation increases Ca²⁺ sensitivity of permeabilized lymphatic muscle via myosin light chain 20 phosphorylation-dependent and -independent mechanisms.
The contractile activity of muscle cells lining the walls of collecting lymphatics is responsible for generating and regulating flow within the lymphatic system. Activation of PKC signaling contributes to the regulation of smooth muscle contraction by enhancing sensitivity of the contractile apparatus to Ca(2+). It is currently unknown whether PKC signaling contributes to the regulation of lymp...
متن کاملSubstance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R.
OBJECTIVE The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. METHODS A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delin...
متن کاملEffects of relaxin on rat uterine myosin light chain kinase activity and myosin light chain phosphorylation.
Isometrically suspended uteri from estrogen-primed rats were stimulated with prostaglandin F2 alpha and then exposed to relaxin. Relaxin-dependent decreases in the ratio of phosphorylated to total myosin light chains (MLC) and in MLC kinase activity, measured in the presence of 0.5 mg/ml of uterine myosin and the absence and presence of Ca2+-calmodulin (CaM), were observed. The time-course and ...
متن کاملMyosin phosphorylation triggers actin polymerization in vascular smooth muscle.
A variety of contractile stimuli increases actin polymerization, which is essential for smooth muscle contraction. However, the mechanism(s) of actin polymerization associated with smooth muscle contraction is not fully understood. We tested the hypothesis that phosphorylated myosin triggers actin polymerization. The present study was conducted in isolated intact or beta-escin-permeabilized rat...
متن کاملEnhanced contractility and myosin phosphorylation induced by Ca(2+)-independent MLCK activity in hypertensive rats.
AIMS The role of Ca(2+) sensitization induced by a Ca(2+)-independent myosin light chain kinase (MLCK) in hypertension has not been determined. The aim of this study was to clarify the role of possible Ca(2+)-independent MLCK activity in hypertension. METHODS AND RESULTS We compared increases in contractile force and phosphorylation of myosin light chain (MLC) evoked by calyculin A, a phospha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 297 2 شماره
صفحات -
تاریخ انتشار 2009